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In this work, average Hamiltonian theory is used to study selective excitation under a series of small flip-
angle h-pulses h � p

3

� �
applied either periodically [corresponding to the DANTE pulse sequence] or ape-

riodically to a spin-1/2 system. First, an average Hamiltonian description of the DANTE pulse sequence is
developed that is valid for frequencies either at or very far from integer multiples of 1

s, where s is the
interpulse delay. For aperiodic excitation, a single resonance, msel, can be selectively excited if the h-pulse
phases are modulated in concert with the interpulse delays. The conditions where average Hamiltonian
theory can be accurately applied to describe the dynamics under aperiodic selective pulses, which are
referred to as pseudorandom-DANTE or p-DANTE sequences, are similar to those found for the DANTE
sequence. Signal averaging over different p-DANTE sequences improves the apparent selectivity at msel

by reducing the excitations at other frequencies. Experimental demonstrations of p-DANTE sequences
and comparisons with the theory are presented.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Of the multitude of radiofrequency (RF) schemes used for excit-
ing and controlling spin dynamics in NMR, most can be placed into
one of two categories: aperiodic RF pulse sequences or periodic RF
pulse sequences. For many aperiodic sequences, the RF phases,
amplitudes and pulse delays are often chosen randomly or in a
pseudorandom manner. Such sequences have been used to gener-
ate white noise or broadband excitation in NMR noise spectros-
copy [1–4], while sequences that generate colored noise have
been used in early spin decoupling schemes, such as in noise
decoupling [5]. Theoretical models of a spin system’s response to
pseudorandom pulse sequences typically use a Volterra or pertur-
bation series in the randomly applied RF pulses [6]. Since many
pseudorandom sequences are designed by considering only the
first term in the Volterra series, pseudorandom sequences are typ-
ically low power and result in small, linear spin excitations.

Unlike aperiodic sequences, periodic RF pulse sequences are
commonly used in a variety of NMR experiments and are often
found to be superior to their pseudorandom counterparts; for
example, two periodic sequences, MLEV [7] and WALTZ-16 [8],
provide better heteronuclear decoupling over noise decoupling
under most conditions. Many periodic RF pulse sequences are
designed using average Hamiltonian theory (AHT) [9], where the
necessary RF pulse sequence that generates a desired average
Hamiltonian Havg over a time sc must be determined (sc is the
length of the pulse sequence). Repeated application of the pulse
ll rights reserved.
sequence introduces frequencies into the dynamics that are integer
multiples of 1

sc
, which may result in higher-order contributions to

Havg that degrade the sequence’s performance. It has been previ-
ously noted that random or asynchronous pulse imperfections
placed into pulse sequences can often improve their performance
[10]. Recently, Uhrig dynamical decoupling (UDD) sequences
[11], which utilize unequally spaced p-pulses, were shown to be
superior [12] in preserving spin coherence to the standard Carr–
Purcell–Meiboom–Gill (CPMG) sequence [13], which uses equally
spaced p-pulses.

Selective pulses [14] are one class of pulses that do not fall
neatly into either category. The design of most commonly used
selective pulses, such as the gaussian and the sinc pulses, is guided
by the fact that the excitation profile of a spin system after an ap-
plied RF pulse is proportional to the Fourier transformation of the
applied RF pulse [15] within the linear response regime, i.e., for
total flip-angle H� p

3. This principle has been used to develop
colored noise sequences for selective excitation in imaging
applications [16]. While such sequences are valid for small flip-
angles, they can fail in the nonlinear regime H P p

3

� �
. As such, most

methods for designing selective pulses of arbitrary flip-angle use
the linear response pulse shapes as starting points in numerical
searches [17]. However, pulse shapes generated by these numeri-
cal techniques often do not lend themselves to an easy physical
interpretation behind their selectivity.

One of the earliest and most easily understood periodic selective
pulse that is rigorously valid for all flip-angles is the DANTE se-
quence [18], which is shown in Fig. 1A. The DANTE sequence consists
of a series of N small-tip, broadband h-pulses that selectively rotate
only those spins resonating at integer multiples of the interpulse
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Fig. 1. Pulse sequence for (A) DANTE and (B) pseudorandom-DANTE or p-DANTE
selective excitation. (A) The DANTE sequence [18] consists of a series of N small-flip,
h-pulses, equally spaced between periods of free evolution of time s. The periodicity
of the sequence results in a rotation of H = Nh about an axis perpendicular in the
transverse plane for those spins resonating (in the rotating frame) at a frequency
mZ � n

s, where n is an integer. (B) The p-DANTE sequence consists of a series of N
unequally spaced small-flip, h-pulses, where sk is the time delay between the kth
and (k + 1)th, pulse, and /k ¼ 2p

Pk�1
k¼1mselsk is the phase of the kth pulse with /1 = 0.

In the p-DANTE sequence, only those spins resonating (in the rotating frame) at
mZ = msel are rotated by an angle H = Nh.
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delay, mZ ¼ n
s, by H = Nh about an axis in the transverse plane. This

frequency response results from the periodicity of the h-pulses,
which can be readily seen in the linear response regime [19]. To
excite a single frequency, however, the periodicity of the DANTE
sequence must be violated. Breaking DANTE’s symmetry in order
to reduce excitation at other frequencies has been previously
accomplished by modulating the phases [20], amplitudes, and de-
lays of the h-pulses [21]. However, most modifications of the DANTE
sequence that result in exciting only a single frequency are still
based on the assumption of linear response, H� p

3.
In this work, AHT is applied to describe the selective excitation

in NMR by pseudorandom-DANTE sequences (Fig. 1B), which are a
class of experiments consisting of a series of small, flip-angle
pulses, where the interpulse delays and phases are modulated.
The outline for this paper is as follows: first, the conditions, where
AHT can be applied to the DANTE pulse sequence are determined.
Because AHT is often used as a guiding principle in pulse sequence
design, understanding the limits of AHT’s application to aperiodic
sequences is useful since there are no general theories to handle
aperiodic, nonlinear excitation (except by direct numerical simula-
tion). Next, an AHT description for a series of aperiodically spaced
and phase-modulated h-pulses is developed. Such sequences are
referred to as pseudorandom-DANTE or p-DANTE selective pulses
[Fig. 1(B)]. Finally, experiments performed in acetone and in an
acetone/DMSO/water solution are used to demonstrate and vali-
date the selectivity of the p-DANTE sequences along with the the-
oretical results presented in this work.
2. General theory

Both the DANTE (Fig. 1A) and the p-DANTE (Fig. 1B) pulse
sequences involve the application of a series of N small flip-angle
h-pulses that selectively rotate spins about an axis lying in the
transverse plane by an angle H = Nh. For the DANTE sequence, spins
resonating at mZ ¼ n

s are selectively rotated by H (where n is an
integer), whereas for the p-DANTE sequence, only those spins reso-
nating at mZ = msel are rotated by H. To understand the selectivity of
both the DANTE and p-DANTE sequences within the framework of
AHT, it is useful to revisit the dynamics of a spin-1/2 system under
nonresonant RF irradiation. The Hamiltonian during the application

of an RF pulse is given by bH
�h ¼ xz

bIZ þxRFðbIX cosð/Þ þbIY sinð/ÞÞ,
where / and xRF are the phase and amplitude of the RF pulse,
xZ = 2pmZ is the resonance offset that the spin experiences in the

rotating frame, and bIj ¼ 1
2
brj for j = {X,Y,Z} are spin-1/2 operators

with br being the Pauli spin matrices.
The propagator for an RF pulse applied for a time Tp can be writ-

ten as:

bPexact
/ ðTpÞ ¼ exp � i

�h
bHTp

� �
¼ exp �i xZ

bIZ þxRF
bIX cosð/Þ þbIY sinð/Þ
� �h i

Tp

� �
¼ cosðxEFFTpÞb1 � i sinðxEFFTpÞ

xZ

xEFF

bIZ þ
xRF

xEFF
ðcosð/ÞbIX þ sinð/ÞbIYÞ

� �
ð1Þ

where xEFF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

Zþx2
RF

p
2 and 1̂ is the two-dimensional identity

operator.
Alternatively, the propagator in Eq. (1) can be transformed into

an interaction frame defined by bU freeðxZtÞ ¼ expð�ixZtbIZÞ and can
be written as:

bPexact
/ ðTpÞ ¼ bU freeðxZTpÞbT exp �i

Z Tp

0

xRF

2
bIþeiðxZ t0�/Þ
h�

þbI�e�iðxZ t0�/Þ
i
dt0
�

¼ bU freeðxZTpÞbT exp � i
�h

Z Tp

0

bHINT;/ðt0Þdt0
� �

ð2Þ

where bT is the Dyson time-ordering operator [22], andbHINT;/ðtÞ ¼ xRF
2
bIþeiðxZ t�/Þ þbI�e�iðxZ t�/Þ
� �

, is the Hamiltonian in the
interaction frame, which in this case represents a purely phase-
modulated RF pulse. Using AHT [9,23], the time-dependent propa-
gator in Eq. (2) can be approximated by:

bT exp � i
�h

Z Tp

0

bHINT;/ðt0Þdt0
� �

¼ exp � i
�h

Hp;/Tp

� �
ð3Þ

In Eq. (3), Hp;/ ¼
P1

n¼1HðnÞp;/ is the average Hamiltonian, where the
first two terms in the series are:

Hð1Þp;/

�h
¼ 1

�hTp

Z Tp

0

bHINT;/ðt0Þdt0

¼ xRF

2
sinc

xZTp

2

� � bIþei
xZ Tp

2 �/
	 


þbI�e�i
xZ Tp

2 �/
	 
� �

Hð2Þp;/

�h
¼ 1

2iTp�h2

Z Tp

0

Z t0

0

bHINT;/ðt0Þ; bHINT;/ðt00Þ
h i

dt0dt00

¼ x2
RF

4iTp

bIZ

Z Tp

0
dt0
Z t0

0
dt00 eixZ ðt0�t00Þ � e�ixZ ðt0�t00Þ	 


¼ x2
RF

2xZ
½1� sincðxZTpÞ�bIZ ð4Þ

bPexact
/ ðTpÞ in Eq. (2) can be approximated as:

bPexact
/ ðTpÞ � bP/ðTpÞ � bU freeðxZTpÞ exp � i

�h
Hð1Þp;/ þ Hð2Þp;/

� �
Tp

� �
ð5Þ

For xRFTp 6
2p
9 ;

bPexact
/ ðTpÞ � bP/ðTpÞ

��� ��� 6 10�3 for all xZ, where

kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½AyA�

q
represents the Frobenius matrix norm. For instance,

if A and B are two n � n unitary matrices, then kA � Bk represents a
measure of the ‘‘length/distance’’ between A and B, with the maxi-
mum value of kA � Bkbeing 2

ffiffiffi
n
p

. Since the DANTE and p-DANTE se-
quences both consist of a series of small flip-angle h-pulses with
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h < 2p
9 , the approximation bPexact

/ ðTpÞ � bP/ðTpÞ in Eq. (5) will be used
in the rest of this paper.

For future comparison of the propagator in Eq. (2) with the prop-
agator under either the DANTE or the p-DANTE sequences in Fig. 1, it

is useful to consider an alternative description of bPexact
/ ðTpÞ in the

interaction frame by dividing bT exp � i
�h

R Tp

0
bHINT;/ðt0Þdt0

� �
in Eq. (2)

into N� 1 smaller propagators of duration DT ¼ Tp

N , which is illus-

trated in Fig. 2A. In this case, Pexact
/ ðTpÞ can be rewritten as:

bPexact
/ ðTpÞ ¼ bU freeðxZTpÞbT exp � i

�h

Z Tp

0

bHINT;/ðt0Þdt0
� �

¼ bU freeðxZTpÞbT YN�1

j¼0

exp � i
�h

Z ðjþ1ÞDT

jDT

bHINT;/ðt0Þdt0
 !

� bU freeðxZTpÞbT YN�1

j¼0

exp �ixRFDT sinc
xZDT

2

� ��
bIX cos /�j

� �
� IY sin /�j

� �� ��
ð6Þ

where /�j ¼ jþ 1
2

	 

xZDT � /. With respect to Eq. (6) and Fig. 2A, the

total propagator for an RF pulse of strength xRF applied off-
resonantly by xZ for a time Tp is equivalent to the application of a
series of N small-flip, phase-modulated RF pulses followed by a
rotation about the ẑ-axis by xZTp, where the flip angle and phase
of the (j + 1)th pulse are h ¼ xRFDT sinc xZDT

2

	 

and �/�j respectively.

2.1. DANTE pulse sequence

In this section, we present an AHT description of the DANTE
pulse sequence (Fig. 1A) that is valid outside the linear response re-
gime H > p

3

� �
. While an analytical expression for DANTE is known

when the h-pulses are applied on resonance [24], there currently
does not exist a quantitative analytical theory for the effective
excitation under p-DANTE sequences (Fig. 1B) when aperiodic de-
lays, pulse angles, and/or nonconstant flip angles are used. Under-
standing the limits of AHT applied to the DANTE sequence can
therefore help to determine the conditions where an AHT descrip-
tion of the p-DANTE sequences are also valid.

As mentioned in the introduction, the DANTE sequence [18] con-
sists of a series of N, equally spaced small-tip, h-pulses of constant
phase and duration tp, where xRFtp ¼ h� p

3 (Fig. 1A). The full prop-
agator for the DANTE pulse sequence can be written as [for / = 0]:
τ τ τ ....

{
τ

N θ-pulses

X X X X X X
φ0

....

φ1φ2 φ3 φΝ−2φΝ−1

Ufree(ωZTtot)= = 

= = 
φ0

....

φ1φ2 φ3 φΝ−2φΝ−1

Ufree(ωZTp)ωZIZ+ωRFIX

{ Tp(A)

(B)

* * * * * *

Fig. 2. The connection between the DANTE pulse sequence and the application of
an off-resonant RF pulse. (A) An RF pulse of strength xRF applied off resonance by
xZ for a time Tp is equivalent to applying N� 1 phase-modulated, small flip-angle
h ¼ xRF Tp

N sinc xZ Tp

2N

� �
pulses followed by a rotation about the ẑ-axis by an angle xZTp.

The phase of the (k + 1)th pulse is given by /�k ¼ � kþ 1
2

	 
xZ Tp

N þ / [in 2A, / = 0]. (B)
The DANTE pulse sequence is equivalent to a series of N phase-modulated small-flip
pulses followed by a rotation about the ẑ-axis by an angle NxZs [Eq. (7)]. The phase
of the (k + 1)th pulse is /k ¼ �xZ kst þ tp

2

� �
, where st = s + tp, tp is the length of the

small-flip pulses, and Ttot = (N � 1)st + tp.
bUexactðTtotÞ ¼ bP0ðtpÞðbU freeðxZsÞbP0ðtpÞÞN�1

¼ ðbP0ðtpÞbU freeðxZsÞÞN�1bP0ðtpÞ

¼ bU freeðxZTtotÞbT YN�1

k¼0

bP�kxZst ðtpÞ ð7Þ

where s is the time delay between pulses, st = s + tp, Ttot =
(N � 1)st + tp, andbP�kxZst ðtpÞ ¼ bU yfreeðkxZstÞbP0ðtpÞbU freeðkxZstÞ

	 exp � i
�h
bHktp

� �
ð8Þ

where bHk is given by [using Eq. (4)]:

bHk

�h
� bU yfreeðkxZstÞ

Hð1Þp;0 þ Hð2Þp;0

�h

 !bU freeðkxZstÞ

¼
Hð1Þp;�kxZst

þ Hð2Þp;�kxZst

�h

¼ xRF

2
sinc

xZtp

2

� � bIþeixZ kstþ
tp
2

	 

þbI�e�ixZ kstþ

tp
2

	 
� �
þ x2

RF

2xZ
ð1� sinc ðxZtpÞÞbIZ

¼ a
2
bIþeixZ kstþ

tp
2

	 

þbI�e�ixZ kstþ

tp
2

	 
� �
þ bbIZ ð9Þ

where a ¼ xRF sinc xZ tp

2

� �
and b ¼ x2

RF
2xZ
ð1� sinc ðxZtpÞÞ. As has been

previously noted [25–27], the propagator for the DANTE sequence
in Eq. (7) is the same as the propagator for a continuous series of N,
phase modulated small-flip pulses, where the phase modulation de-
pends upon the spin’s resonance offset, xZ = 2pmZ, followed by an
overall rotation about the ẑ-axis by xZTtot. This is illustrated in
Fig. 2B. If mod[xZst,2p] � 0 (where mod[a,b] gives the positive
remainder of a/b), then all N pulses are effectively applied along the
same direction since /k � /j for all k and j. The small h pulses are
therefore additive and result in an overall rotation of H � Nh about
an axis in the transverse plane. When mod[xZst,2p] – 0, the h-pulses
are applied about different directions [/k – /j for k – j in general]
thereby reducing the overall spin nutation. Comparing Fig. 2B and
Eqs. (7) and (9) with Fig. 2A and Eq. (6), the propagator for the DANTE
sequence is similar to the propagator for an off-resonant, RF pulse of
duration Tp = Ntp followed by a rotation about the ẑ-axis. That is, Eq.
(7) can be written as:

bUexactðTtotÞ �bU freeðxZTtot �x0ZTpÞ

exp½�iTp x0ZbIZ þx0RF
bIX cosð/0Þ þbIY sinð/0Þ
� �� �

� ð10Þ

where x0Z¼ 2p
tp

mod½xZst;2p�; x0RF ¼
sinc

xZ tp
2

	 

sinc

x0
Z

tp
2

� �xRF , and /0 ¼ ðx0Z�xZÞ tp

2 .

As mentioned above, when mod½xZst ;2p�¼0;x0Z¼0, and the
pulses are effectively applied on resonance, maximally rotating the
spin by H. When mod[xZst,2p] – 0, then x0Z can be quite large since
2p
tp
�1 for short pulses (tp� 1). When x0Z�x0RF , the effective pulse

appears to be applied very far from resonance, resulting in negligible
spin excitation.

We now consider using AHT to describe the DANTE pulse se-
quence and to determine under what conditions an AHT description
of DANTE are valid. In the AHT description, the total propagator can

be approximated by bUðTtotÞ � bUAHTðTtotÞ in Eq. (7), wherebUAHTðT totÞ ¼ bU freeðxZT totÞ exp � i
�h HavgNtp

	 

and Havg ¼

P1
n¼1HðnÞavg is

the average Hamiltonian. The first term in HAHT is given by [using
Eq. (A1)]:



J.D. Walls, A. Coomes / Journal of Magnetic Resonance 212 (2011) 186–196 189
Hð1Þavg

�h
¼ 1

Ntp�h

XN�1

k¼0

bHktp

¼ 1
N

XN�1

k¼0

a
2
bIþeixZ kstþ

tp
2

	 

þbI�e�ixZ kstþ

tp
2

	 
� 

þ bbIZ

 !

¼ bbIZ þ
a
2

sin NxZst
2

	 

N sin xZst

2

	 
 ei
xZ Ttot

2 bIþ þ e�i
xZ Ttot

2 bI�� �
¼ a

sinc NxZst
2

	 

sinc xZst

2

	 
 bITðxZ ; st ; tp;NÞ þ bbIZ ð11Þ

where bITðxZ ; st; tp;NÞ ¼ bIX cos xZ Ttot
2

	 

�bIY sin xZ Ttot

2

	 

.

Using Eqs. (A3) and (A4), the second term in Havg;H
ð2Þ
avg, is given

by:

Hð2Þavg

�h
¼ 1

2iNtp�h2

X
k>j

½bHktp; bHjtp�

¼ tp

2iN

X
k>j

a
2

eixZ kstþ
tp
2

	 
bIþ þ e�ixZ kstþ
tp
2

	 
bI�� ��
þbbIZ ;

a
2

eixZ jstþ
tp
2

	 
bIþ þ e�ixZ jstþ
tp
2

	 
bI�� �
þ bbIZ



¼ tpab

4iN

X
k>j

eixZ jstþ
tp
2

	 

� e�ixZ kstþ

tp
2

	 
� �bIþ
� e�ixZ jstþ

tp
2

	 

� e�ixZ kstþ

tp
2

	 
� �bI�
þ a2tp

4iN
bIZ

X
k>j

eixZ ðk�jÞst � e�ixZ ðk�jÞst

¼ � a2tp

2xZst

sinc ðNxZstÞ � sinc ðxZstÞ
sinc xZst

2

	 
	 
2
bIZ

þ abtpðN2 � 1Þ
2NxZst

sinc ðNþ1ÞxZst
2

� �
� sinc ðN�1ÞxZst

2

� �
sinc2 xZst

2

	 

�bITðxZ ; st ; tp;NÞ ð12Þ

Although the form of Havg for the DANTE sequence is somewhat
complicated, the physical picture behind Havg in Eqs. (11) and (12)

can be seen in Fig. 2B. When xZst = 2pn for integer n; ½bHk; bHj� ¼ 0

for all k and j since /k = /j, so Havg ¼ Hð1Þavg exactly. In this case, the
propagator represents a rotation about an axis in the transverse
0.05

0.04
0.03
0.02

0.01

0.06
0.2 0.4 0.6 0.8 1.00.0

25

50

75

100

 ωZ
ωRF

N

(A)

|| U
exact -U

AHT ||

>
>(T

tot )
( T

tot )

N

78
80
82
84

0.29 0.31 0.33 0.35  ωZ
ωRF

Θ = π = Νθ2

Fig. 3. (Color online) The Frobenius norm of kbUexactðT totÞ � bUAHTðT totÞk as a function of the
RF, xZ

xRF
. In this figure, two calculations are shown for total maximum flip angle of (A) H ¼ p

2

and bUAHTðTtotÞ is the propagator calculated using the average Hamiltonian, Havg � Hð1Þavg þ
between bUexactðTtotÞ and bUAHTðTtotÞ occur slightly above and below the resonance conditio
by two parallel lines given by N ¼ INT xZ

xRF

H
2pn

s
tp
þ 1

� �

 3

5n

h i
for integer n – 0. This is more

also improves with decreasing H.
plane of phase �[(N � 1)np + xZtp/2] by a total angle of
H = NxRFtp sinc(xZtp/2) � NxRFtp = Nh for xZtp� 1. For xZst – 2pn

for integer n, the various bHk are pointing in different directions,
which results in a reduction to the average transverse field in

Hð1Þavg. Furthermore, since the effective rotation directions no longer

commute with one another, that is, ½bHk; bHj� – 0 for k – j, there is a

contribution to Havg at second-order, Hð2Þavg, of an effective field along

the ẑ direction. When Hð2Þavg

��� ���� Hð1Þavg

��� ���, the effective field lies mostly

about the ẑ-axis and the spins are minimally excited (this argu-
ment is similar to the concept of second-averaging [28]).

In order to see under what conditions AHT can accurately

describe the DANTE pulse sequence, Fig. 3 shows kbUexactðT totÞ�bUAHTðT totÞk using Havg � Hð1Þavg þ Hð2Þavg, as a function of N and xZ/xRF.
Two calculations are shown in Fig. 3, one for a total pulse rotation
of H = p/2 (Fig. 3A) and one for H = 2p (Fig. 3B). In both calculations,
s
tp
¼ 1000. As mentioned above, bUAHTðTtotÞ � bUexactðT totÞ when

2pn ¼ xZst ¼ xZ
xRF

xRFtp
s
tp
þ 1

� �
¼ xZ

xRF

H
N

s
tp
þ 1

� �
, where n is an inte-

ger. Therefore, at a resonance condition for n – 0, there exists a
linear relationship between N and xZ

xRF
that is given by

N ¼ INT
xZ

xRF

H
2pn

s
tp
þ 1

� �� 

ð13Þ

where INT[x] gives the nearest integer to x. From Fig. 3, for h 6 p
60

(N P 30 in Fig. 3A and N P 120 in Fig. 3B), bUAHTðT totÞ is a good

approximation to bUexactðTtotÞ for all xZ
xRF

except near the resonance

conditions in Eq. (13). The deviations of bUAHTðTTotÞ from bUexactðTtotÞ
occur when xZ is slightly above or below the DANTE resonance con-
ditions, xZ ¼ 2pn

st
for integer n. From numerical calculations, the

range of frequencies in which bUAHTðTTotÞ is a good approximation

to bUexactðTtotÞ was found to be given by dxZ � 6hp
5stH

or dxZ � 6hp
5stH

,

where dxZ ¼min j xZ � 2pn
st
j

h i
is the smallest frequency difference

between xZ and the nearest integer multiple of the DANTE reso-
nance frequency, 2p

st
. This can be seen in the inset shown in

Fig. 3A, where kbUAHTðTTotÞ � bUexactðTtotÞk is largest just above and be-
low the resonance condition given by Eq. (13). Although the range

of xZ, where bUAHTðT totÞ is a good approximation increases with
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number of small tip h-pulses, N, and the ratio of the resonance offset to the applied
and (B) H = 2p. bUexactðTtotÞ [Eq. (7)] is the exact propagator for the DANTE sequence,
Hð2Þavg in Eqs. (11) and (12). In both calculations, s

tp
¼ 1000. The greatest deviations

ns in Eq. (13) with the maxima in kbUexactðTtotÞ � bUAHTðT totÞk approximately described
clearly shown in the inset of 3A. The agreement between bUAHTðT totÞ and bUexactðTtotÞ
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decreasing h (increasing N), the maximum of kbUAHTðTtotÞ�bUexactðTtotÞk mainly depends upon the overall rotation angle, H.

For H 6 5p
9 ;max½kbUAHTðTtotÞ � bUexactðTtotÞk� 6 0:1 for all N and xZ.

For H = 2p in Fig. 3B, the propagator using up to the second-order
AHT breaks down for xZ slightly above and below the DANTE reso-

nance conditions, where max½kbUAHTðTtotÞ � bUexactðTtotÞk� ¼ 2:81 �
2
ffiffiffi
2
p

. This is consistent with earlier results [29] that the conver-
gence of the Magnus expansion for the average Hamiltonian breaks
down for rotations greater or equal to 2p. Physically, this can be
understood as follows: for dxZ � 6hp

5stH
, the effective phases of the

pulses (see Fig. 2B) are modulated faster than the strength of the
RF, that is, dxZ�xRF. In this case, the small-tip pulses effectively
average to zero, leading to negligible spin nutation. For
dxZ � 6ph

5stH
, the phases of the pulses in Fig. 2B are relatively

unchanged during the course of the sequence; in this case, the

various Hamiltonians, bHk in Eq. (9), commute with one another,

so Havg � Hð1Þavg and bUexactðTtotÞ � bUAHTðTtotÞ. In the intermediate
range, where dxZ � 6ph

5stH
, the phase modulation is comparable to

the strength of the RF, and there exists no ’’small’’ parameter to uti-
lize in the expansion of the average Hamiltonian (i.e., higher-order
terms greater than second-order must be considered and/or exact
calculation of the propagator must be performed).
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Fig. 4. (Color online) Theoretically calculated excitation [(B) and (D)] and ẑ-magnetizati
sequences, N ¼ 30; h ¼ p

60, and /k = 0 for all k so that only spins resonating at msel = 0 Hz [d
different p-DANTE sequences with randomly chosen delays were generated such that th
The excitation and ẑ-magnetization profiles were averaged over Navg different p-DANTE
curve). In (C) and (D), one hundred different p-DANTE sequences with periodically
sp

k ¼ sp 1þ ds
s cos 2pk

fp

� �h i
, where ds

s ¼ 1ffiffi
2
p and fp was inversely proportional to the square roo

sp was chosen to ensure that the averaged delay was the same for all p and was also the s
for all p. The averaged excitation and ẑ-magnetization profiles for Navg = 1 [red curve wi
Navg = 100 [green curve, averaging from f1 ¼ 1=

ffiffiffi
2
p

to f100 ¼ 1=
ffiffiffiffiffiffiffiffiffi
541
p

] are shown. As Na

resulting excitation and ẑ-magnetization profiles for p-DANTE sequences using randoml
were practically identical.
2.2. pseudorandom DANTE (p-DANTE)

In the DANTE sequence, a natural frequency of 1
st

is introduced
into the dynamics, resulting in efficient excitation at frequencies
mZ ¼ n

st
for integer n. However, suppose that one was interested in

using a DANTE-like sequence to efficiently excite only one particu-
lar frequency, say at mZ = 0 Hz. One way to accomplish this using a
DANTE sequence would be to make st small enough such that all
DANTE frequencies, n

st
for n – 0, lie outside the relevant spectral

width. If the spectral width for the system of interest is large, how-
ever, this would necessitate using a small st, where the smallest st

is st � tp (i.e., when s = 0). In this case, the selectivity or width of
the excitation spectrum about mZ = 0 Hz is approximately given
by 1

Nst
, which for st � tp means that the selectivity is roughly pro-

portional to 1
Ntp
¼ 2pmRF

H . In this limit, the effect of the DANTE se-
quence is similar to evolution under continuous RF irradiation,
which leads to a very broad excitation profile unless mRF is weak
or H� 2p. Under these conditions, the DANTE sequence is equiv-
alent to applying a long, low-amplitude RF pulse.

As mentioned in the introduction, an alternative way to excite
only a single resonance using a DANTE-like sequence would be to
violate the periodicity of the DANTE sequence. This could be
accomplished in a variety of ways, for example, such as using
aperiodic delays, modulating the pulse amplitudes and delays,
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on profiles [(A) and (C)] for a series of p-DANTE sequences (Fig. 1B). In all p-DANTE
m = mZ � msel = 0 Hz] are rotated about the x̂-axis by H ¼ p

2. In (A) and (B), one hundred
e average pulse delay, 1

29

P29
k¼1sk ¼ 1:6 ms, was the same for all p-DANTE sequences.

sequences with Navg = 1 (red curve), Navg = 25 (blue curve), and Navg = 100 (green
modulated delays were used, where the kth delay for the pth experiment was
t of the pth prime number (e.g., f1 ¼ 1=

ffiffiffi
2
p

; f2 ¼ 1=
ffiffiffi
3
p

, up to f100 ¼ 1=
ffiffiffiffiffiffiffiffiffi
541
p

). The time
ame as that used in Fig. 4A and B for randomly chosen delays, i.e., 1

29

P29
k¼1s

p
k ¼ 1:6 ms

th f1 ¼ 1=
ffiffiffi
2
p

], Navg = 25 [blue curve, averaging from f1 ¼ 1=
ffiffiffi
2
p

to f25 ¼ 1=
ffiffiffiffiffiffi
97
p

], and
vg increases, the ‘‘fluctuations’’ in both hIZi and �hIYi decrease. For Navg = 100, the
y chosen delays (A and B) and those using periodically modulated delays (C and D)
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pulse sculpting the h-pulses [20,21]. One particular class of aperi-
odic DANTE sequences that is considered in this paper, pseudoran-
dom-DANTE (p-DANTE), is illustrated in Fig. 1B, where N small-flip
h-pulses are applied with a delay of sk between the kth and (k + 1)th
pulse, where in general, sk – sj. For such a sequence to selectively
and efficiently excite spins at a single resonance frequency msel,
the phases of the h-pulses must be modulated and correlated with
the interpulse delays. For p-DANTE excitation at msel, the phase

of the (k + 1)th pulse is given by /kþ1 ¼ �2pmsel ktp þ
Pk

j¼1sj

� �
¼

�2pmselTk, where Tk ¼ ktp þ
Pk

j¼1sj, and /1 = 0 and T0 = 0.
As in the DANTE case, the propagator for the p-DANTE sequence

can be written as bUðTtotÞ ¼ bU freeðxZT totÞ exp � i
�h HavgNtp

	 

, where

T tot ¼ TN�1 þ tp ¼ Ntp þ
PN�1

j¼1 sj, and Havg is the average Hamilto-

nian for the p-DANTE sequence with the first two terms of Havg gi-
ven by:

Hð1Þavg

�h
¼ 1

N

XN�1

k¼0

bU yfreeðDxTkÞ
Hð1Þp;0 þ Hð2Þp;0

�h

 !bU freeðDxTkÞ

¼ a
N

XN

k¼1

bIþei DxTkþ
xZ tp

2

	 

þ I�e�i DxTkþ

xZ tp
2

	 
� �
þ bbIZ ð14Þ
Hð2Þavg

�h
¼ tp

2iN�h2

X
k>j

bU yfreeðDxTkÞ Hð1Þp;0 þ Hð2Þp;0

� �bU freeðDxTkÞ;
h

bU yfreeðDxTjÞ Hð1Þp;0 þ Hð2Þp;0

� �bU freeðDxTjÞ
i

¼ tp

2iN

X
k>j

a
2

eiDx Tkþ
tp
2

	 
bIþ þ e�iDx Tkþ
tp
2

	 
bI�� ��
þbbIZ ;

a
2

eiDx Tjþ
tp
2

	 
bIþ þ e�iDx Tjþ
tp
2

	 
bI�� �
þ bbIZ



¼ tpab

4iN

X
k>j

ðeiDxTj � eiDxTk Þei
Dxtp

2 bIþ � ðe�iDxTj � e�iDxTk Þe�i
Dxtp

2 bI�
þ a2tp

4iN

X
k>j

ðeiDxðTk�TjÞ � eiDxðTj�TkÞÞbIZ

¼ abtp

2N

X
k>j

sin
DxðTj � TkÞ

2

� � bIþeiDx
TjþTkþtp

2

	 

þbI�e�iDx

TjþTkþtp
2

	 
� �" #

þ a2tp

2N
bIZ

X
k>j

sinðDxðTk � TjÞÞ ð15Þ

where Dx = 2p(mZ � msel) = 2pdm, and a and b were previously de-
fined in Eq. (9). Unlike the DANTE case, the average delay between

pulses fluctuates within the p-DANTE sequence, that is, Tk
k –

Tj

j for

k – j. For dm – 0 Hz, a p-DANTE sequence is effectively equivalent
to applying an RF field with a fluctuating offset (Fig. 2A), the result
of which is a seemingly random excitation profile for those spins
with dm – 0 Hz. Spins with dm = 0 Hz are rotated by Nh = H. This is
illustrated by the theoretical calculations shown in Fig. 4A and B
for the excitation and ẑ-magnetization profiles, averaged over (up
to Navg = 100) different p-DANTE sequences, respectively. For all
p-DANTE sequences in Fig. 4, N = 30 and the various 29 sk’s were
chosen randomly but were scaled to ensure that the average delay

time in each p-DANTE sequence was the same, 1
29

P29
k¼1sk ¼ 1:6 ms.

Consider the excitation and ẑ-magnetization profile for a single p-
DANTE sequence [red curve (Navg = 1)] shown in Fig. 4A and B. A
maximum rotation of H ¼ p

2 occurs at dm = 0 Hz, where �hbIYi ¼ 1
and hbIZi ¼ 0. Away from dm = 0 Hz, the excitation and ẑ-magnetiza-
tion profiles are quite noisy, but j hbIYi j< 1 and hbIZi > 0. Note that
the ẑ-magnetization profile is less noisy than the excitation profile
since rotations away from the ẑ direction go as cosðhÞ � 1� h2

2 ,
whereas excitations go as sin(h) � h for h� 1.
If the excitation and ẑ-magnetization profiles are averaged over
different p-DANTE sequences that are selective for msel and with the
same total pulse length, then the fluctuations in both the excitation
(Fig. 4B) and ẑ-magnetization (Fig. 4B) profiles for dm – 0 roughly
decrease as 1ffiffiffiffiffiffiffi

Navg
p (at least initially) relative to the excitation at

dm = 0 Hz. However, even when Navg� 1, there still exists a ’’base-
line’’ excitation at dm – 0 Hz that is nonzero (averaging simply de-
creases the fluctuations about the baseline excitation). The average
’’baseline’’ excitation away from dm = 0 Hz but within the band-
width of the RF pulses, xRF

2p , is approximately given by

j hbIYi j � Nh
Nþ2, which for N� 2 is approximately given by

j hbIYi j � h. This can be understood by the fact that the first h-pulse
is common to all p-DANTE sequences, whereas the effects of subse-
quent h-pulses depend upon the delays and are, in a sense, aver-
aged away as Navg increases. The magnitude of the transverse
magnetization away from dm = 0 Hz appears somewhat uniform,
which can be seen in Fig. 4B. Finally, averaging over different
p-DANTE sequences results in a decrease in the ẑ-magnetization
profile for dm – 0 Hz within the RF bandwidth. In this case, the

ẑ-magnetization profile is approximately given by hbIZi�1�ðNþ1Þh2

2 .
This can be understood by the fact that the ẑ-magnetization before
the h-pulse is reduced by a factor of cos(h) after application of the
h-pulse. The transfer of transverse magnetization to ẑ-magnetiza-
tion, averaged over different p-DANTE sequences, is approximately
zero for dm – 0 Hz. Therefore, the ‘‘baseline’’ ẑ-magnetization is
approximately given by ðcosðhÞÞN�1�N h2

2 for h� p
3 and for

dm – 0 Hz. Both excitation and deviations in ẑ-magnetization from
unity for dm – 0 Hz decrease as h/ 1

N for fixed H = Nh.
Besides randomly chosen delays, averaging over different sets

of delays that are periodically modulated can also lead to selective
excitation. Consider a series of delays, where the kth delay is given
by sk ¼ sþ ds cos 2pk

f

� �
for N � 1 P k P 1, where f is a real number,

and s P ds so that sk P 0. For such a sequence to selectively excite
spins resonating at msel, the phase of the (k + 1)th pulse must be gi-
ven by /k+1 = �2pmselTk, where:
Tk ¼
Xk

j¼1

sj ¼
Xk

j¼1

sþ ds
2

ei2pj
f þ e�i2pj

f

� �

¼ ksþ ds
2

eið2kþ1Þp
f � eipf

2i sin p
f

� � � e�ið2kþ1Þp
f � e�ipf

2i sin p
f

� �
0@ 1A

¼ ks� ds
2

1� csc
p
f

� �
sin

2kþ 1
f

p
� �� �

ð16Þ
with T0 = 0. The total time for such a p-DANTE sequence is given by

Ttot ¼ Ntp þ TN�1 ¼ Ntp þ ðN � 1Þs� ds
2 þ ds

2 csc p
f

� �
sin pð2N�1Þ

f

� �
.

Using the value of Tk in Eq. (16) and Eq. (A6) in Appendix A, Hð1Þavg

in Eq. (14) can be evaluated and is given by:

Hð1Þavg ¼
a

2N

XN�1

k¼0

bIþei DxTkþ
xZ tp

2

	 

þ I�e�i DxTkþ

xZ tp
2

	 
� �
þ bbIZ

¼ a
2

X1
n¼�1

Jn
Dxds

2
csc

p
f

� �� � sinc
NðDxsþ2np

f Þ
2

� �
sinc

Dxsþ2np
f

2

� �
� Iþeivn þ I�e�ivn
	 


þ bbIZ ð17Þ

where Jn is a bessel function of order n, and vn ¼ Dx ðN�1Þs�ds
2 þ

Nnp
f þ

xZ tp

2 . From Eq. (17), Hð1Þavg is maximal at the conditions

dm ¼ m
s � n

fs for integer m and n. These define the resonance
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Fig. 5. (Color online) Difference in the (A) ẑ-magnetization and (B) excitation
profiles for the p-DANTE sequences used in (C) and (D) calculated using the
propagator from AHT, bUAHTðTtotÞ ¼ bU freeðxZ TTotÞe�

i
�h Hð1ÞavgþHð2Þavgð ÞNtp [Eqs. (14) and (15)]

versus the profiles calculated using the exact propagator, bUexactðTtotÞ. The agreement
is relatively good over a wide frequency range except above and below the dm = 0 Hz
resonance condition, dm � 
 3h

5Hst
¼ 
13 Hz. For all j dm j� 3h

5Hst
and j dm j� 3h

5Hst
, the

agreement between AHT and the exact calculation improves with averaging over
different p-DANTE sequences.
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conditions for p-DANTE sequences with sk ¼ sþ ds cos 2pk
f

� �
. How-

ever, Hð1Þavg is scaled by Jn m� n
f

� �
pds
s csc p

f

� �� �
, which is less than one

for m – n
f . If f is an irrational number, then the maximal scaling only

occurs for the m = n = 0 resonance [J0(0) = 1]. At all other resonance

conditions, Jn m� n
f

� �
pds
s csc p

f

� �� �
is less than one, resulting in a

smaller overall rotation.
Fig. 4C and D show the numerically averaged ẑ-magnetization

and excitation profiles respectively, averaged for up to one hun-
dred different p-DANTE sequences using periodically modulated
delays. In the simulations, N = 30 and ds

s ¼ 1ffiffi
2
p . For the pth p-DANTE se-

quence, fp was set to be equal to the inverse of the square root of the
pth prime number, i.e., f1 ¼ 1=

ffiffiffi
2
p

; f2 ¼ 1=
ffiffiffi
3
p

, up to f100 ¼ 1=
ffiffiffiffiffiffiffiffiffi
541
p

.
The time sp for the pth p-DANTE experiment was chosen so that aver-
age interpulse delay, 1

29

P29
j¼1s

p
j ¼ 1:6 ms, was the same as that used

for the p-DANTE sequences with randomly chosen delays (Fig. 4A
and B). Consider only a single p-DANTE sequence [Navg = 1 case (red
curve) in which f ¼ 1ffiffi

2
p and 1

s ¼ 625:13 Hz]. Unlike the case of using
randomly chosen delays (red curves in Fig. 4A and B), where the
resulting excitations appear randomly distributed throughout the
spectral range, the excitation profile using periodically modulated de-
lays occur at discrete dm given by the resonance condition
dm ¼ 625:13ðm�

ffiffiffi
2
p

nÞ Hz [Eq. (17)]. Note that while the resonance
at dm = 0 (m = 0 and n = 0) is maximally excited ½hbIZi ¼ 0; hbIYi

��� ��� ¼ 1�,
the degree of excitation at other resonance conditions is less. In par-
ticular, the resonances at dm = ± 625.13 Hz (m = ± 1,n = 0) are not ob-
served in the calculated profile, since at these conditions, Hð1Þavg is
scaled by J0(�2.3046) = 0.053, whereas the resonances at
dm = ± 366.2 Hz (n = � 1 and m = ± 2) are clearly observed
[jJ1(1.35)j = 0.5325]. As was the case for p-DANTE sequences using
randomly chosen delays, averaging over different sets of periodically
modulated p-DANTE sequences reduces the excitation everywhere
except at dm = 0 Hz, which is a common resonance for all p-DANTE se-
quences used in Fig. 4. This is illustrated by comparing Fig. 4A and B
with C and D. Fig. 4 for Navg = 100, where the ẑ-magnetization and
excitation profiles for both periodically-modulated and randomly
chosen delays appear essentially identical. Thus, averaging over ape-
riodic series of h-pulses, where the delays are deterministically gen-
erated, results in excitation profiles that are similar to excitation
profiles for randomly generated delays. This similarity is the reason
behind the use of the moniker pseudorandom-DANTE for the se-
quence shown in Fig. 1B.

Finally, it should be noted that the conditions under which the
average Hamiltonian in Eq. (17) provides a valid description of the
p-DANTE sequence are approximately the same as those found for
the DANTE sequence (Fig. 3). Fig. 5 shows the difference in the
excitation (Fig. 5A) and ẑ-magnetization (Fig. 5B) profiles
calculated using either the exact propagator or the propagator
calculated using the average Hamiltonian up to second-order
[Eqs. (15) and (17)] for the p-DANTE sequences used in Fig. 4C
and D. As shown in Fig. 3, AHT works well for all dm except slightly
above and below the resonance conditions, dm ¼ m

s � n
fs, which is

evident from Fig. 5 for the Navg = 1 curve. The magnitude of the er-
ror from using Havg up to second-order is the same as that found for
a DANTE sequence with H = p/2. The agreement between the AHT
calculations with the exact calculations appears to improve upon
averaging over different p-DANTE sequences, except above and be-
low the dm = 0 Hz, which is a common resonance for all p-DANTE
sequences used in Fig. 5.
3. Experimental

All experiments were performed on a 300 MHz Avance Bruker
spectrometer (static magnetic field of 7 T and an operating
frequency for 1H of 300.13 MHz), using a 5-mm Bruker BBO probe.
A 2 M solution of acetone in acetone-d6 was used to experimen-
tally determine the excitation and ẑ-magnetization profiles as a
function of frequency offset from the acetone resonance for both
DANTE and two pseudorandom pulse sequences. The carrier fre-
quency was changed in increments of 10 Hz over the frequency
range [�580 Hz + macetone, 580 Hz + macetone] in order to experimen-
tally determine the excitation and ẑ-magnetization profiles, result-
ing in a total of 1161 measurements. In order to measure the
ẑ-magnetization, a p

2 pulse xRF
2p ¼ 21:4 kHz
� �

applied after the DANTE
and p-DANTE sequences was phase cycled in concert with the re-
ceiver phase so that only the ẑ-magnetization prior to the last p

2
pulse was measured. A delay of 40 s was used between scans in
all experiments in order to ensure that the system had relaxed
back to equilibrium to avoid any distortions in the observed pro-
files (Fig. 6), and four scans were performed for each measurement.
In all of these experiments, the integral of the acetone peak was
measured. This was due to the fact that even though a BBO probe
was used, radiation damping effects could not be ignored for the
2M acetone solution after application of the DANTE and p-DANTE
sequences. The observed radiation time constant for the 2M ace-
tone solution was sRD = 200 ms. While radiation damping could
be safely ignored during the DANTE and p-DANTE sequences,
which all had a pulse sequence length of approximately 58 ms,
radiation damping after the initial excitation resulted in the rota-
tion of the acetone magnetization back to the þẑ-axis, thereby
causing distortions in the observed acetone signal. To correct for
this, the integral of the acetone signal was calculated since it is
invariant to radiation damping and serves as a good measure of
the initial transverse magnetization after application of the RF
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pulses. Furthermore, neglecting radiation damping during the
experimental DANTE and p-DANTE sequences was a reasonable
approximation for this sample since there was good agreement be-
tween theory [blue] and experiment [red] as shown in Fig. 6.

Finally, in order to demonstrate the improved selectivity in the
excitation and ẑ-magnetization profiles by signal averaging over
different p-DANTE sequences (as illustrated in Fig. 4), experiments
using different p-DANTE sequences were performed on a solution
of acetone, dimethyl sulfoxide (DMSO), and water diluted in D2O,
with [acetone] = 0.33 M, [DMSO] = 0.37 M, and [H2O] = 0.53 M. All
chemicals were obtained from Sigma-Aldrich.
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Fig. 6. (Color online) Experimental (red) and theoretical (blue) excitation (A–C) and ẑ-m
sequences (B, E, C, and F) as a function of the frequency offset from the acetone resonanc
using a 2M acetone solution in acetone-d6 by changing the RF carrier frequency from
integrated. For the DANTE sequence, s = 2 ms; with these parameters, the acetone resona

range [�580 Hz,580 Hz]. For the p-DANTE sequences, the kth delay was either g

sk ¼ 2:063 1� cos kp
29þ1

� �h i
ms = 4:126 sin2 kp

2ð29þ1Þ

� �
(C and F). In both cases, the average de

those obtained from the DANTE sequence shown in (A) and (D). For both p-DANTE sequen
and F) appears to generate smaller excitations over a wider frequency range than the othe
(blue) and experiment (red).
4. Results and discussion

The experimentally determined excitation and ẑ-magnetization
profiles under DANTE and two different p-DANTE sequences ob-
tained using a 2M acetone solution in acetone-d6 are shown in
Fig. 6, where the blue and red curves correspond to the theoretical
and experimental profiles, respectively. In these experiments,
N ¼ 30; h ¼ p

60, and tp = 720 ns were used with a maximum rota-
tion of H ¼ Nh ¼ p

2. For the DANTE sequence, s = 2 ms. Over the
spectral range shown in Fig. 6A and D, DANTE excitations at fre-
quencies dm ¼ 
 1

s ¼ 
500 Hz and at dm = 0 Hz were observed. For
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agnetization (D–F) profiles after application of the DANTE (A and D) and p-DANTE
e, dm = m � macetone. In all experiments, N = 30 and h ¼ p

60. The profiles were generated
�580 Hz to 580 Hz in 10 Hz increments, and the resulting acetone resonance was
nce was maximally excited at dm � 
 1

s ¼ 
500 Hz and at dm = 0 Hz over the spectral

iven by sk ¼ 2:096 1þ 1
3 cos 2kp

23

	 
� �
ms (B and E) or by a UDD-like [11] delay

lay between pulses was 1
29

P29
k¼1sk ¼ 2 ms in order to better compare the results with

ces, there is minimal excitation at dm = ± 500 Hz, although the UDD-like sequence (C
r p-DANTE sequence (B and E). In all cases, there is good agreement between theory
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the p-DANTE sequences, the kth delay was given by either (Fig. 6C

and F) sk ¼ 2:063 1� cos kp
29þ1

� �h i
ms ¼ 4:126 sin2 kp

2ð29þ1Þ

� �
[which

is a similar set of delays used in a Uhrig Dynamical Decoupling
(UDD) sequence [11]] or (Fig. 6B and E) sk ¼
2:096 1þ 1

3 cos 2kp
23

	 
� �
ms. In both cases, the average delay between

pulses was equal to 1
29

P29
k¼1sk ¼ 2 ms in order to allow for better

comparison with the DANTE sequence used in Fig. 6A and D. Both
p-DANTE sequences generated a maximum excitation ðH ¼ p

2Þ at
dm = 0 Hz, and, as expected, smaller excitations for dm – 0 Hz were
also observed. Note that for p-DANTE sequence with UDD-like de-
lays (Fig. 6C and F), the excitation and ẑ-magnetization profiles
look similar to that of a p-DANTE sequence using randomly chosen
delays (the red curve in Fig. 4A and B), whereas excitations using
the other p-DANTE sequence (Fig. 6B and E) appear to be concen-
trated within a smaller frequency range.

In order to examine the effects of averaging over different
p-DANTE sequences, experiments were performed on a DMSO/
acetone/water solution in D2O. The spectrum of the solution after
a simple p

2-acquire sequence is shown in Fig. 7A, where the RF
was applied on resonance with respect to the water signal
[dmacetone,water = macetone � mwater = �768 Hz and dmDMSO,water =
mDMSO � mwater = �620.2 Hz]. The experimental excitation and
ẑ-magnetization weighted spectra after application of the DANTE
sequence with N ¼ 30; h ¼ p

60 ðtp ¼ 630 nsÞ, and s � 1
jdmDMSO;water j
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Fig. 7. (A) The spectrum after a p
2-acquire experiment for a DMSO, acetone, and

water solution. The spectrum is centered on the water resonance [dm = 0 Hz]. (B) The
spectrum after application of a DANTE pulse sequence with N ¼ 30;
h ¼ p

60 ; H ¼ Nh ¼ p
2, and s ¼ 1

jdmDMSO;water j
� 1:6 ms. In this case, both the water and

DMSO resonances were excited, whereas very little excitation occurred at the
acetone resonance [dmacetone,water = �768 Hz]. (C) The ẑ-magnetization weighted
spectrum after application of the DANTE pulse sequence. As expected from (B),
there was substantial ẑ-magnetization for the acetone resonance and little
ẑ-magnetization for both the water and DMSO resonances after application of the
DANTE sequence.
1:6 ms are shown in Fig. 7B and C respectively. With s = 1.6 ms,
the DANTE sequence efficiently excites both the water
[dm ¼ 0

s ¼ 0 Hz] and the DMSO [dm ¼ � 1
s ¼ �620 Hz] resonances

(Fig. 7B) but leaves the acetone magnetization mostly about the
ẑ-axis (Fig. 7C).

The averaged excitation (Fig. 8B) and ẑ-magnetization weighted
spectra (Fig. 8A) for the DMSO/acetone/water solution were ob-
tained using up to one hundred different p-DANTE sequences,
and the results are shown for Navg = 1 [red curve], Navg = 25 [blue
curve], and Navg = 100 [green curve] in Fig. 8. The p-DANTE
sequences used in Fig. 8 were the same used in the theoretical
calculations shown in Fig. 4C and D, where the kth delay used

in pth experiment was given by sp
k ¼ sp 1þ dsp

sp
cos 2pk

fp

� �� �
¼ sp

1þ 1ffiffi
2
p cos 2pk

fp

� �� �
for k = 1 to k = N � 1 = 29. In each experiment,

sp was chosen such that the total time of the delays was the same
as that used in the DANTE sequence shown in Fig. 7B and C, i.e.,P29

j¼1s
p
j ¼ Tp

29 ¼ 46:77 ms � 29� 1:6 ms. Using Eq. (16) along with
Tp

29 ¼ 46:77 ms; sp can be determined for the pth experiment.
Therefore, the actual time for the kth delay in the pth experiment
was given by:

sp
k ¼

46:77 ms

29� 1
2
ffiffi
2
p 1� csc p

fp

� �
sin 59p

fp

� �� � 1þ 1ffiffiffi
2
p cos

2pk
fp

� �� �
ð18Þ

As in Fig. 4C and D, the water resonance (dm = 0 Hz) was maximally
excited, whereas the averaged excitation at both the acetone and
DMSO resonances decreased upon averaging over different p-
DANTE sequences. From Fig. 8B, averaging over different p-DANTE
sequences did not generate any distortions in the amplitude and
phase of the water resonance. Similarly, the ẑ-magnetization
weighted spectra indicated that the acetone and DMSO magnetiza-
tion remained mostly about the ẑ-axis after application of the
p-DANTE sequence, whereas there was little ẑ-magnetization at
the water resonance.

Finally, it is useful to compare the p-DANTE selective excitation
scheme with traditional selective pulses. The selectivity of both
traditional selective pulses and p-DANTE excitation is determined
by the total length of the pulse, Ttot, with the excitation bandwidth
about msel being inversely proportional to Ttot. However, traditional
shaped selective pulses generate a well-defined excitation profile
after a single application of the pulse, whereas p-DANTE selective
excitation only achieves this selectivity after averaging over differ-
ent p-DANTE sequences (see Fig. 4) to reduce spurious excitations
away from msel. With regards to this aspect, p-DANTE sequences do
not offer an advantage over traditional selective pulses for use in
traditional NMR experiments. However, for experiments per-
formed in non-laboratory settings, where shaped or phase modu-
lated pulses are not readily available, such as in NMR logging
experiments [32] or experiments using the NMR-mouse [30,31],
p-DANTE sequences provide a convenient method to selectively
excite a single resonance (msel = 0 Hz) without the need for
amplitude/phase modulation. Furthermore, modifications of the
p-DANTE sequences to selectively excite particular multiple-
quantum transitions (MQ-DANTE) benefit from averaging over
multiple sets of delays in order to reduce spurious excitations for
other MQ-transitions, which will be presented elsewhere. Finally,
it should be noted that colored noise sequences for selective
excitation in imaging applications [16] have been developed,
which were valid within the linear response regime H� p

3

� �
.

Since selectivity is ultimately determined by T�1
tot , high selectiv-

ity requires long pulse times which means that relaxation effects
cannot be neglected. In the absence of RF irradiation, T1 (longitudi-
nal) and T2 (transverse) determine the relevant relaxation time-
scales during periods of free evolution. However, the effective
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Fig. 8. (Color online) Experimental stacked plots of the (A) ẑ-magnetization weighted spectra and the (B) excitation spectra after averaging over Navg = 1 (red), Navg = 25 (blue),
and Navg = 100 (green) p-DANTE sequences (same sequences used in Fig. 4C and D) applied to the acetone, DMSO, and water solution used in Fig. 7. From Fig. 4C and D, only the
water resonance at dm = 0 Hz should be efficiently excited. From Fig. 6B the water resonance [dm = 0 Hz] is efficiently excited without any distortion in phase or amplitude with
averaging over different p-DANTE sequences, and the amount of excitation at the acetone and DMSO resonances decreases as Navg increases. In Fig. 8A, the ẑ-magnetization
weighted spectra are shown, illustrating that both the acetone and DMSO magnetization lie mostly along the ẑ-direction after application of the p-DANTE sequences.
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relaxation timescales during a shaped pulse can be quite different
than the T1 and T2 times during free evolution, and these time-
scales can depend quite sensitively upon the particular sample
being measured along with the particular selective pulse being ap-
plied [33]. For the p-DANTE sequence, as long as the average inter-
pulse delay is much greater than the time of the h-pulse, T1 and T2

remain the relevant relaxation timescales, independent of sample.
It should also be noted that for the sequences used in Figs. 6–8,
Ttot � 59 ms, whereas T1,T2 � s. Therefore, relaxation during these
p-DANTE sequences could be safely ignored. Finally, one particular
advantage of the p-DANTE (and DANTE) sequences compared to
other selective pulses is that the mechanism of p-DANTE’s selectiv-
ity is relatively straightforward, enabling these pulses to be easily
designed and implemented, whereas the mechanism behind the
selectivity of many shaped pulses, such as E-BURP [34], is not as
clear, especially in the nonlinear regime H > p

3

� �
. Furthermore,

since msel is determined by the phase-modulation of the h-pulses
in a p-DANTE sequence, interleaving the h-pulses between shaped,
pulsed-field gradients makes the apparent phase-modulation spa-
tially dependent, thereby making the selectivity of the p-DANTE
sequence spatially dependent, i.e., mselð~rÞ. Such sequences could
therefore have applications in ultrafast NMR experiments [35,36].

5. Conclusions

In this work, average Hamiltonian theory (AHT) was used to
calculate the effective propagators for the DANTE (Fig. 1A) and
pseudorandom-DANTE or p-DANTE (Fig. 1B) sequences. An AHT
(up to second-order) description of the DANTE sequence was found
to be valid for overall rotations of H 6 5p

9 for all frequencies. For lar-
ger rotations H P 5p

9

� �
, the AHT description of the DANTE sequence

was also found to be valid except for frequencies slightly above and
below integer multiples of the DANTE frequency, 1

st
, where

st = s + tp, s is the interpulse delay, and tp is time of the h-pulse.
With these restrictions in mind, an AHT description for the
p-DANTE sequence (Fig. 1B) was developed, where modulations
in the interpulse delay introduce an aperiodicity to the sequence
so that only a single frequency, msel, is excited. While the excitation
and ẑ-magnetization profiles for a single p-DANTE sequence are
not particularly clean, i.e., small excitations exist at mZ – msel, aver-
aging over different p-DANTE sequences ‘‘cleans up’’ the excitation
profiles so that only a small baseline excitation exists everywhere
except at msel, where the magnetization is maximally rotated by H.
Experimental demonstrations (Figs. 6 and 8) of the p-DANTE
sequences were found to be in good agreement with AHT
predictions. Finally, since any shaped pulse can be recast into a
DANTE-like sequence with nonconstant delays/flip-angles/phases
[25–27], the AHT description presented in this paper could provide
insight into pulse shaping/sculpting and selective excitation in
both NMR and optical spectroscopies.

For future work, determining the optimal set of p-DANTE se-
quences that generate the ‘‘cleanest’’ excitation profiles with the
smallest number of p-DANTE sequences will be investigated. Since
the frequency selection in p-DANTE sequences is determined by
correlating the pulse phases with the delays, the p-DANTE se-
quences could also be incorporated into ultrafast NMR [35,36]
techniques to selectively excite resonances within different parts
of the sample volume. Furthermore, extending the AHT results ob-
tained in this paper to coupled spin systems is currently underway,
whereby DANTE-like or p-DANTE-like sequences can be used to
selectively excite multiple-quantum spin transitions. The condi-
tions under which an AHT description can be applied in these sys-
tems are approximately the same as those found in this paper,
since any subspace of two transitions can be described [37] as an
effective spin-1/2, and the theory presented in this work can be
used to derive analytical expressions for the average Hamiltonian
in simple coupled spin systems. Coupling these techniques with ul-
tra-fast NMR should enable the quick determination of all spin
transitions in a given molecular system. Finally, the theory pre-
sented in this work would also be applicable to describing the evo-
lution under a series of imperfect np pulses npþ h with h� p

3

� �
and could be modified to investigate imperfections in quantum
bang-bang [12,38] techniques consisting of a series of p-pulses.
Acknowledgments

We would like to thank Alex Burum and Dr. John Logan for a
careful reading of this manuscript. This work was supported by a
Camille and Henry Dreyfus New Faculty award, and startup funds
and a Provost Research award from the University of Miami.
Appendix A. Harmonic sums

In deriving Havg � Hð1Þavg þ Hð2Þavg for the DANTE sequence in Eqs.
(11) and (12), explicit formulas for sums of eikxst over integer k
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were used. In this section, the relevant formula for these sums are
derived.

The sum,
PN�1

k¼0 e
ikf ¼
PN�1

k¼0 ðe
if Þk, is nothing more than a geo-
metric series of e±if. Using the formula for a geometric series,PN�1

k¼0 ck ¼ cN�1
c�1 , gives:

XN�1

k¼0

ðe
if Þk ¼ e
iNf � 1
e
if � 1

¼ e
iðN�1Þf
2

sin Nf
2

� �
sin f

2

� � ¼ Ne
iðN�1Þf
2

sinc Nf
2

� �
sinc f

2

� � ðA1Þ

For double sums of the form
P

k>je

iðk�jÞf for j = 0,1, . . . ,N � 2 and

k = 1,2, . . . ,N � 1, one has:X
k>j

e
iðk�jÞf ¼
XN�1

k¼1

e
ikf þ e�if
XN�1

k¼2

e
ikf þ e�2if
XN�1

k¼3

e
ikf þ . . .

þ e�iðN�2Þf e
iðN�1Þf ¼ e
iðN�1Þf þ 2e
iðN�2Þf þ 3e
iðN�3Þf

þ . . .þ ðN � 1Þe
if ¼
XN�1

k¼1

ke
iðN�kÞf

¼ e
iNf

�i
@
PN�1

k¼1 e�ikf

@f
¼ e
iNf

�i
@

@f
e�iNf � 1
e�if � 1

� 1
� �

¼ 1� e
iNf � Nð1� e
if Þ
4 sin2 f

2

� � ðA2Þ

ThereforeX
k>j

eiðk�jÞf � e�iðk�jÞf ¼ Nðeif � e�if Þ � ðeiNf � e�iNf Þ
4 sin2 f

2

� �
¼ i

2
N sinðf Þ � sinðNf Þ

sin2 f
2

� �
¼ 2iN

f
sinc ðf Þ � sinc ðNf Þ

sinc2 f
2

� � ðA3Þ

Another sum that is necessary in evaluating Hð2Þavg in Eq. (12) isX
k>j

e
ikf � e
ijf ¼
XN�1

k¼1

e
ikf � ðN � 1Þ þ
XN�1

k¼2

e
ikf � ðN � 2Þe
if

þ . . .þ e
iðN�1Þf � e
iðN�2Þf

¼
XN�1

k¼1

ke
ikf �
XN�1

k¼1

ðN � kÞe
ikf e�if

¼ ð1þ e�if Þ
XN�1

k¼1

ke
ikf � Ne�if
XN�1

k¼1

e
ikf

¼ ðe
�if þ 1Þðe
if � Ne
iNf þ ðN � 1Þe
if ð1þNÞÞ

ðe
if � 1Þ2

� Nðe
iðN�1Þf � 1Þ
e
if � 1

¼ � i
2

e
iN�1
2 f

�
ðN � 1Þ sin ðNþ1Þf

2

� �
� ð1þ NÞ sin ðN�1Þf

2

� �
sin2 f

2

� �
¼ � i

f
ðN2 � 1Þe
iN�1

2 f

�
sinc ðNþ1Þf

2

� �
� sinc ðN�1Þf

2

� �
sinc2 f

2

� � ðA4Þ

Finally, a sum that is particularly useful for deriving Hð1Þavg in Eq. (17)

for periodically modulated delays, sk ¼ sþ ds cos 2pk
f

� �
with

Tk ¼
Pk

j¼1sj given by Eq. (16), is:
XN�1

k¼0

e
iDxTk ¼ e�iDxds
2

XN�1

k¼0

e
iDxkse

iDxds

2 csc p
f

� �
sin 2kþ1

f p
� �

¼ e�iDxds
2

XN�1

k¼0

e
iDxks

�
X1

n¼�1
Jn

Dxds
2

csc
p
f

� �� �
e
inp2kþ1

f

¼ e�iDxds
2

X1
n¼�1

Jn
Dxds

2
csc

p
f

� �� �
e
inp

f

�
XN�1

k¼0

e

ik Dxsþ2np

f

� �
ðA5Þ

where in deriving Eq. (A5), the Jacobi–Anger expansion,
e
iz sinðhÞ ¼

P1
n¼�1JnðzÞe
inh was used, where Jn(z) is an nth order

Bessel function. Using Eqs. (A1), (A5) reduces to:

e�iDxds
2

X1
n¼�1

Jn
Dxds

2
csc

p
f

� �� �
e
inpf e
i

ðN�1Þ Dxsþ2np
f

� �
2

�

N sinc
N Dxsþ2pn

f

� �
2

24 35
sinc

Dxsþ2np
f

2

� 
 ðA6Þ
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